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Abstract 

With saline water as the continuous medium, a two-component McMillan-Mayer 

equation of state is used to describe liquid-liquid phase equilibria in a two-protein 

system. The equation of state is based on a hard-sphere reference with perturbations 

introduced through a potential of mean force to account for electrostatic forces and for 

attraction between protein particles. To illustrate the thermodynamic framework, one 

parameter each is fitted to experimental precipitation data for aqueous saline one-

protein systems containing either lysozyme or ovalbumin. A lysozyme-ovalbumin 

interaction parameter is then introduced to calculate phase behavior in the aqueous two-

protein system. These calculations are remarkably similar to classical vapor-liquid 

equilibrium calculations using an equation of state. For the aqueous two-protein system, 

calculations give the light-phase composition as well as the lysozyme and ovalbumin 

partition coefficients for a given dense-phase composition. Agreement with sparse 

experimental data is reasonable over a range of pH and high ionic strength provided by 

the common precipitant ammonium sulfate. 
 
Keywords: phase equilibria, equation of state, two-protein systems, molecular 
thermodynamics, protein precipitation. 
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Introduction 

 

 Precipitation from solution provides a standard practical method for protein 

separation (Bjurstrom, 1985). It is especially popular as the first, coarse step in a protein 

purification sequence. Precipitation is achieved by addition of a precipitating agent to a 

solution containing one or more proteins. Addition of this agent induces a phase split 

where the solution separates into regions that are, respectively, rich and lean in the target 

protein. A number of precipitation agents have been used, including organic solvents 

such as methanol, ethanol, isopropanol and acetone; polyelectrolytes such as polyacrylic 

acids, polysaccharides and polyphosphates (Hoare and Dunnill, 1984) and non-ionic 

polymers such as polyethylene glycol (Asakura and Oosawa, 1954, 1958; Foster et al., 

1973; Vrij, 1976; de Hek and Vrij, 1981; Joanny et al., 1979; Middaugh et al., 1979; 

Vincent et al., 1980; Sperry et al., 1981; Atha and Ingham, 1981; Gast et al., 1983a, b; 

Haire et al., 1984; Forciniti et al., 1991; Mahadevan and Hall, 1992a, b). Fractionation of 

human blood using ethanol is perhaps the largest-volume application of protein 

precipitation (Cohn and Edsall, 1943; Bjurstrom, 1985). However, the most common 

industrial precipitation agent is an inorganic salt such as ammonium (or sodium) sulfate, 

citrates and phosphates (Cowel and Vincent, 1982; Grimson, 1983; Victor and Hansen, 

1984; Bjurstrom, 1985; Niederauer and Glatz, 1992; Shih et al., 1992; Rothstein, 1994; 

Coen et al., 1995, 1997; Kuehner et al., 1996). 

  

 As biotechnology continues to expand toward large-scale production, better 

separation techniques for larger quantities of protein will be required. For large-scale 
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separations, precipitation with ammonium sulfate is particularly attractive because of its 

low cost. Increasing volumes of protein throughput in separation processes provide 

motivation for a molecular thermodynamic method to aid design of protein-separation 

processes. While development of a reliable theory is hindered by the paucity of suitable 

experimental data, the work presented here reports a molecular-thermodynamic 

framework for a quantitative description of liquid-liquid equilibria for an aqueous system 

containing two or more proteins. 

 

 Most previous work on the thermodynamics of protein-precipitation has been 

confined to systems containing only one protein (e. g. Vlachy et al., 1993; Chiew et al., 

1995; Kuehner et al., 1996; Muschol and Rosenberger, 1997; Sear, 1999; Kim et al., 

2000); however, descriptions for aqueous multi-protein systems have been reported by 

Mahadevan and Hall (1992b) and Hino and Prausnitz (1999). These earlier studies 

assumed that pure, crystalline proteins are precipitated from a solution containing protein 

and salt (Arakawa and Timasheff, 1985). It is well known that precipitation of protein 

crystals requires special care and much patience. In a typical large-scale industrial 

application, the precipitate is not a crystal but a second fluid phase (Bjurstrom, 1985; 

Shih et al., 1992; Berland et al., 1992); theoretical and molecular-simulation studies 

suggest that the observed liquid-liquid equilibria represent metastable states (ten Wolde 

and Frenkel, 1997). 

 

 To represent aqueous protein phase behavior, we require a suitable potential of mean 

force to represent a variety of solvent-mediated protein-protein intermolecular forces. 
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These include (but are not limited to) electrostatic repulsion, solvent cavity formation, 

protein dipole-dipole forces, dispersion potentials, osmotic attraction potentials and a 

specific attraction potential typically represented by a square-well or Lennard-Jones 

attraction. Native proteins are approximately described by hard spheres with isotropic 

potentials (e. g. Vlachy et al., 1993; Chiew et al., 1995) but in some cases the protein is 

considered as a linear flexible chain or as a sphere or ellipsoid with potentials arising 

from “patches” on the surface of the protein molecule (Asthagiri and Lenhoff, 1997). 

 

 Kuehner et al (1996) summarized the procedure for applying an equation of state to 

describe liquid-liquid equilibrium in a one-protein aqueous system. For a one-protein 

solution in a continuous medium, the McMillan-Mayer theory is used to reduce the 

system to a pseudo one-component system (see, for example, McQuarrie, 1976a). 

McMillan and Mayer showed that the methods of imperfect-gas theory can be applied to 

such solutions. In this work we consider an aqueous two-protein solution. Extension to 

aqueous multi-protein solutions is straightforward. While, in principle the equilibria of 

concern her could also be described by an activity coefficient model, it is not at all clear 

what such a model might be because, for the calculations given here, the model must 

apply to a larger range of protein concentrations. The experimental data used are for 

dilute solutions and thus it is necessary to use some theoretical approximation for 

extending dilute solution data to concentrated solutions. A well-established 

approximation for this purpose is the random phase approximation (RPA) for establishing 

a perturbation to a hard-sphere reference system (Vlachy et al., 1993; Chiew et al., 1995). 
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 Further, a necessary condition for fluid-phase equilibria is that, at the same 

temperature, the two phases have the same osmotic pressure; that pressure is 

conveniently calculated from our equation of state. In an activity-coefficient description, 

equality of the osmotic pressures is replaced by equality of the chemical potential of the 

solvent (water). Therefore, whatever model is used for activity coefficients needs a 

ternary model. In the activity coefficient (Lewis-Randall) description, the two-protein 

aqueous system is a ternary mixture. In the McMillan-Mayer description, a two-protein 

system is a binary mixture. 

 

 Following earlier work (e. g. Kuehner et al., 1996), we consider globular proteins to 

be hard spheres with a perturbation introduced via the potential of mean force. This 

procedure provides a large simplification because the molecular solvent is replaced by a 

continuous solvent medium. While the specific results of this work are only valid for the 

solvent (water) and salt (ammonium sulfate) choices we have studied, the thermodynamic 

and computational framework are general, applicable to other solvents, salts and proteins. 

 

 The potential of mean force is related to the osmotic second virial coefficient in an 

exact way (McQuarrie, 1976b). Because that coefficient can be measured relatively 

easily, we can, in principle, obtain the microscopic potential of mean force from 

macroscopic measurements. 

  

 Coen (1995) and Coen et al (1995, 1997) have obtained limited experimental data for 

the precipitation of lysozyme and ovalbumin in one-protein systems with ammonium 
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sulfate over a range of pH and high ionic strength. Only a few data were obtained for the 

phase behavior of these proteins together in an aqueous two-protein system at similar pH 

and ionic strength. In this work we present a two-component equation of state describing 

liquid-liquid equilibria in aqueous two-protein systems. The specific interaction energy 

for lysozyme, as well as for ovalbumin (which depends on ionic strength and pH) was 

obtained by fitting to one-protein precipitation data of Coen (1995) and Coen et al (1995, 

1997). The behavior of the two-protein system is then calculated using these single-

protein interaction energies and one additional interaction parameter for the cross 

interaction. 

 

 The next section describes the thermodynamic framework. Sample results are then 

presented and discussed, leading to some conclusions. 

 

Thermodynamic Framework 

 

 The aqueous protein solution contains a mixture of two types of hard spheres that 

differ in diameter and charge. The total Helmholtz energy of the system  is given by  Atotal

 

  A
NkT

A
NkT

A
NkT

total res ideal

= +  (1) 

 

where N is the total number of molecules in the system, k is Boltzmann’s constant, T is 

the absolute temperature and A  is the residual Helmholtz energy of the system. res

The ideal Helmholtz energy A l  is given by idea
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  A
NkT

x
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i i i
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= ∑
=

lnρ Λ3

1
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1−  (2) 

 

where xi  is the mole fraction of protein i on a solvent-free basis, ρ  is the number density 

of protein i and Λ i  is its de Broglie wavelength. The residual Helmholtz energy of this 

mixture is the sum of two parts: a reference Helmholtz energy and a perturbation 

Helmholtz energy. The perturbation Helmholtz energy is given by the Random Phase 

Approximation (RPA) (Evans and Sluckin, 1981; Grimson, 1983; Victor and Hansen, 

1984; Vlachy et al., 1993; Chiew et al., 1995; Kuehner et al., 1996). The residual 

Helmholtz energy is the sum of two contributions: 

i
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The reference Helmholtz energy is given by the BMCSL equation of state (Mansoori et 

al., 1971; Lucas, 1991). The compressibility factor Z  is ref
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where ρ  is the total protein number density. The quantities ξ  are measures of 

composition defined by 

k
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 ξ
π

ρ σk i
k

i
= ∑

6 i ,   (5) k = 0 1 2 3, , ,

 

where index i refers to the protein and σ i  is the hard-sphere diameter of protein i. In Eq. 

5 subscript and superscript k should not be confused with subscript i. When k = 3, Eq. 5 

gives the reduced protein density η . 

 

The residual Helmholtz energy is obtained from the compressibility factor using the 

thermodynamic relation 
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to yield 
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The chemical potential of component i in the mixture is obtained using the 

thermodynamic relation 

 

 µ i
res ref res

i T V N j i
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A
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∂
∂

F
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I
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≠, ,

. (8) 
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After lengthy algebra we obtain 
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 (9) 

 

The reference chemical potential contains all contributions other than those introduced by 

the perturbation; it is the sum of two parts, the residual chemical potential (Eq. 9) and the 

contribution of the ideal portion obtained from Eq. 2, 

 

 µ µi
ref

i
res ref

i
id

kT kT kT
F
H

I
K =

F
HG

I
KJ +

µ . (10) 

  

The ideal chemical potential is: 

 

 µ
ρi

id

ikT
F
HG

I
KJ= +ln ln i

3Λ . (11) 

 

Because Λ i  is independent of density and composition, it cancels out in phase-

equilibrium calculations at constant temperature. 
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 The Random Phase Approximation (RPA) gives a simple expression for the 

contribution form perturbation forces to the compressibility factor: 

 

 Z U
kT

pert =
ρ
2

 (12) 

 

where U is related to the perturbation potential of mean force w  and to composition 

, the mole fraction of component i on a solvent-free basis: 

rpert ( )

xi

 

 . (13) U x x w ri j ij
pert

ij
ijji

= z∑∑
∞

4 2π
σ

( ; )r drσ

 

For proteins in salt solutions, the potential of mean force contains three contributions 

arising from dispersion, electrostatic and specific attractive forces. While these three 

contributions do not necessarily include all possible perturbation interactions, previous 

experience (Kuehner et al., 1996) suggests that they adequately describe the observed 

behavior in systems such as ours. As shown later, the contribution arising from specific 

interactions often far outweigh the other two contributions. We have: 

 

  (14) w r w r w r w rij
pert

ij
disp

ij
elec

ij
spec( ) ( ) ( ) ( )= + +

 

where 
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The dispersion term is essentially identical to the attractive part of the Lennard-Jones 

potential scaled by H, the Hamaker constant, that varies little from one globular protein to 

another. As suggested by Hiemenz (1986), we use H = 5 kT. For w  we use a square-

well potential where ε  is the well depth and λ  is the reduced well width. This is the 

simplest potential that incorporates short-range attraction beyond the protein's hard-core 

diameter. 

ij
spec

ij 1−ij

  

 When i = j, w  refers to ovalbumin-ovalbumin interactions and w  refers 

to lysozyme-lysozyme interactions. When i j , w  refers to the interaction between 

one molecule of ovalbumin and one molecule of lysozyme. To determine w , we 

use the standard combining relations 

rpert
11 ( ) rpert

22 ( )

pert
12 (

≠ rpert
12 ( )

r)
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+
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where  is the only adjustable binary parameter. Because this parameter has a marked 

effect on phase equilibria, it is adjusted to give the best fit to the limited two-protein 

experimental data (Coen et al., 1995, 1997; Coen, 1995). For a fixed temperature, pH and 

ionic strength, the same k  is used to predict partition coefficients for both proteins, as 

well as the light-phase solvent-free mole fraction for a given dense-phase mole fraction. 

In general, in multi-protein systems, interactions between like proteins may be very 

different from those between unlike proteins (because different sites may be involved). 

The use of mixing rules might then be inappropriate. However, in the context of our 

simple model, and for the system here under consideration, the conventional mixing and 

combining rules above are appropriate and sufficiently flexible due to our binary 

interaction parameter k

12k

ij

ij. 

 

 The electrostatic potential of mean force is given by a screened Coulombic potential 

where  is the protein valence and e is the charge on an electron [1.519 (JÅ)iz 1/2]. The 

product z  is the charge on protein molecule i and D is the permittivity of the solvent. 

From Debye-Hückel theory (McQuarrie, 1976c), the screening factor Γ  is given 

by 

ei

);( ijr σ

 

 Γ ( , )
( )

( )

r e
ij

r ij

ij
σ κσ

κ σ

=
+

− −

1
2

2
 (17) 

 

where κ is the inverse Debye length given by 
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In Eq. 18, N  is Avogadro’s number and the factor  converts ionic strength (I) 

to units of molecules/Å

A NA ×
−10 27

3. In Eq. 18, I is in molar units. The Debye length κ  is then in 

units of Å. In typical cases, I refers only to the added salt because the contribution of the 

proteins to I is negligible. The protein charge zi  is determined experimentally from 

titration curves; zi  depends strongly on pH and weakly on molarity and type of salt 

(Kuehner et al., 1999; Cohn and Edsall, 1943). For the high ionic strengths considered 

here, the effect of electrostatic interactions on phase equilibria is very small. Table 1 

gives z  for ovalbumin and lysozyme at different pH. 

1−

i

 

 Square-well parameters λ  and ε  in Eq. 15 are often obtained from experimental 

osmotic-second-virial-coefficient data or from cloud-point data (Grigsby, 2001). As 

suggested by osmotic-second-virial-coefficient data (Gast et al., 1983b, 1986; George and 

Wilson, 1994), the reduced square-well width λ  is set equal to 1.2 for both lysozyme and 

ovalbumin, consistent with the molecular-simulation data of ten Wolde and Frenkel 

(1997). Following Eq. 16, the cross-parameter λ  is also equal to 1.2. The square-well 

depth parameters ε  and ε  for the two one-protein systems are obtained by fitting the 

partition coefficients from the equation of state to those obtained from experiment (Coen, 

1995b) for the one-protein systems. At the high ionic strengths considered here, w r  

provides the dominant contribution to w r . 

ij

22

ij

12

11

spec ( )

pert ( )
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 For the potential of mean force used here, we have three integrals, J  in Eq. 13. They 

can be solved analytically: 

ij
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The perturbation Helmholtz energy is obtained by substituting Eq. 12 into the 

thermodynamic relation Eq. 6: 

 

 A
NkT

U
kT kT

x x J
pert

i j ij
total

ji
= = ∑∑
ρ πρ
2

2  (20) 

 

We can now find the perturbation contribution to the chemical potential: 

 

 µ i
pert

i

pert

j ij
total

jkT N
A

kT kT
x JF

H
I
K =

∂
∂

F
H

I
K = ∑

4πρ  (21) 

 

where J  is the sum of the integrals in Eq. 19. We now have all the expressions 

required to compute phase equilibria from 

ij
total
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 '         ,  i  (22) µ µi
' = i

'

'

= 1 2,

 

where superscripts '  and ' '  stand, respectively, for the dense-fluid and light-fluid phases 

and from 

 

 '  (23) P P' =

 

where P is pressure. The phase diagrams are calculated by substituting Eqs. 9, 11 and 21 

into Eq. 22 for the chemical potential, substituting Eqs. 4 and 12 into Eq. 23 for the 

pressure, and solving these three equations simultaneously. The dense-phase composition 

 is fixed for each phase equilibrium calculation. To generate complete phase diagrams, 

values of x  (ovalbumin dense-phase mole fraction) ranging from 0 to 1 are chosen. The 

initial calculation is done for  (i.e. a one-protein lysozyme system). For each 

subsequent calculation,  is increased by 0.05 and the calculation repeated until , a 

one-protein ovalbumin system. This increment (0.05) is small enough to generate smooth 

curves on the phase diagrams. For most of the two-protein systems considered here, 

phase separation occurs over the whole range of i
' . If, however, a value is chosen for 

which no phase separation occurs, the equilibrium conditions Eq. 22 and 23 can not be 

met for dense-fluid and light-fluid densities which are different from each other. We are 

then in a one-phase region. As we approach the limit of the two-phase region, the 

partition coefficients for both proteins tend to unity. The three unknowns (overall phase 

densities ρ  and light-phase mole fraction x ) are determined by simultaneously 

solving the three equations of equilibrium, Eqs. 22 and 23. This calculation is identical to 

xi
'

1
'

dp

x1 0' =

x1
' 1'

1 =x

x

i
''ρ lp,
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a bubble-point calculation in vapor-liquid equilibria. The equations are solved iteratively 

using Broyden’s method (Press et al., 1992) for finding the simultaneous numerical 

solutions to Eqs. 22 and 23. 

 

 Thermodynamic calculations can be compared with experimental data in the 

following way: because solvent (with dissolved salt) is considered to be a continuous 

medium, a one-protein system is a pure-component system in a solvent-free framework. 

Experimental partition coefficients reported by Coen (1995) and Coen et al. (1995, 1997) 

for a one-protein system are given in terms of concentrations: 

 

 K c
c

one protein
dp

lp
− =  (24) 

 

where c  is the protein concentration in the dense phase in mg/g water and c  is the 

protein concentration in the supernatant (light) phase. From the equation of state for a 

one-protein system we obtain the molar densities of the light phase and dense phase. The 

partition coefficient can be written 

dp lp

 

 K one protein
dp

lp
− =

ρ
ρ

 (25) 

 

where ρ  is the dense-phase protein number density and ρ  is the light-phase protein 

number density. 

dp lp
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In the two-protein system, consistent with Eq. 24, we have two distribution 

coefficients 

 

 K c
c

two protein
dp

lp1
1

1

− =    and   K . (26) c
c

two protein
dp

lp2
2

2

− =

 

Because water and dissolved salt are a continuous medium they contribute no mass to the 

calculated protein densities. Eq. 26 can be rewritten 

 

 K
x
x

two protein dp

lp
1

1

1

− =
'

''

ρ

ρ
    and    K  (27) 

x
x

two protein dp

lp
2

2

2

− =
'

''

ρ

ρ

 

where xi  is the solvent-free mole fraction of component i in the dense phase and x  is the 

solvent-free mole fraction in the light phase. For comparison with experiment, 

concentration data reported in mass units are converted to solvent-free mole fractions by: 

'
i
''

 

 x

c
MW

c
MW

i

i

i

j

jj

=
∑
=

a f

a f1

2
 (28) 

 

where xi  is a solvent-free mol fraction in either phase, ci  is a mass concentration in that 

phase and iaMWf is the molecular weight of component i: 14 300 g/mol for lysozyme 

and 45 000 g/mol for ovalbumin. 
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Results and Discussion 

 

 For data reduction, we need molecular diameters for both proteins. From 

crystallographic data we use 50 Å for ovalbumin (Stein et al., 1990) and 34.4 Å for 

lysozyme (Blake et al., 1965). For each protein, well depth ε  depends on pH and on ionic 

strength of ammonium sulfate solution, as shown in Tables 2 and 3. The well depths were 

obtained from experimental one-protein liquid-liquid equilibrium data (Coen, 1995; Coen 

et al., 1995, 1997) at 25 °C. 

 

 For the two-protein system, we require binary parameter k  as defined in Eq. 16. 

This binary parameter also depends on pH and ionic strength of ammonium sulfate as 

shown in Table 4. 

12

 

 The molecular-thermodynamic framework presented here enables us to calculate 

phase equilibria in a manner virtually identical to that for vapor-liquid equilibria as used 

by chemical engineers for about fifty years. In both cases, the calculation requires an 

equation of state and characteristic constants that reflect intermolecular forces: for a 

binary mixture containing components 1 and 2, we need one set of constants for 1-1 

interactions, another for 2-2 interactions and another for 1-2 interactions. The first and 

second sets we obtain from experimental data for the one-component systems but the 

third set requires some binary data. Thus, there is a striking similarity between 

conventional calculations for vapor-liquid equilibria and those for aqueous multi-protein 

systems. Regrettably, the latter require more experimental information because 
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intermolecular forces between proteins, unlike those for conventional non-electrolyte 

fluids, depend on temperature, pH, ionic strength and the nature of the salt in the aqueous 

medium.   

 

 Figures 1 to 5 show some calculated results for the aqueous two-protein system 

ovalbumin - lysozyme. For a fixed pH and ionic strength, each figure shows a binary 

 diagram as well as the corresponding two-protein partition coefficients for each 

protein. Figures 1 to 3 show results for pH 7, Figures 4 and 5 for pH 4. Figure 1 shows 

phase behavior at pH 7 and ionic strength 9 molal ammonium sulfate. The binary phase 

diagram 1(a) is typical of those observed in vapor-liquid systems; no unusual behavior is 

observed. The calculated K-values 1(b) are in reasonable agreement with experiment, 

especially considering that the accuracy of the data is not high. Figure 2 at pH 7 and 

somewhat lower ionic strength 8 molal shows azeotropic behavior. Figure 3 at pH 7 and 

ionic strength 6 molal indicates phase separation only up to a solvent-free mole fraction 

of ovalbumin of about 0.4; at higher ovalbumin concentrations there is no precipitation. 

As the mole fraction of ovalbumin increases up to 0.4, the partition coefficients decrease 

to unity. At higher ovalbumin mole fractions no phase separation occurs. Figure 4(a) at 

pH 4 and ionic strength 7 molal shows azeotropic behavior similar to that in Figure 2(a) 

except that the deviation from ideality is larger. Finally, Figure 5 shows a highly non-

ideal system at pH 4 and ionic strength 8 molal. The interaction parameter (k ) here is 

the largest of any of the systems studied. The calculations indicate a region where a third 

fluid phase appears when the ovalbumin solvent-free mole fraction in the dense phase is 

in the range 0.05 to 0.4.  

x x' − ''

12
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Conclusions 

 

 A molecular-based equation of state, suitable for aqueous globular proteins, is 

extended to two-protein systems. This equation correctly predicts liquid-liquid phase 

separation when ammonium sulfate at high ionic strength is added to an aqueous mixture 

of ovalbumin and lysozyme. The equation is based on a hard-sphere mixture equation of 

state with perturbations from several contributions to the potential of mean force. A 

single specific energy parameter is adjusted to model phase separation in one-protein 

systems. Using these parameters and one binary specific energy parameter, calculated 

phase behavior gives reasonable agreement with sparse experimental data. Depending on 

pH and ionic strength, the calculations predict different types of phase behavior that are 

remarkably similar to those obtained from classical equation-of-state vapor-liquid-

equilibrium calculations for non-electrolytes. 
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Figure Captions 

 
Figure 1.  Phase diagrams for the system ovalbumin(1)-lysozyme(2) at 

pH 7 and ionic strength 9 molal ammonium sulfate at 25 °C. 
 (a) Binary x'-x'' diagram showing solvent-free mole fraction in the light 

(double prime) and dense (prime) aqueous phases. (b) Partition 
coefficients. The points are from experimental solubility data of Coen 
(1995) and Coen et al (1995). The interaction parameter k  is defined 

through the equation 
12

ε ε . ε12 11 22
1

2
121= −( ) ( k )

 
Figure 2.  Phase diagrams for the system ovalbumin(1)-lysozyme(2) at 

pH 7 and ionic strength 8 molal ammonium sulfate at 25 °C. 
 (a) Binary x'-x'' diagram showing solvent-free mole fraction in the light 

(double prime) and dense (prime) aqueous phases. (b) Partition 
coefficients. The points are from experimental solubility data of Coen 
(1995) and Coen et al (1995). The interaction parameter k  is defined 

through the equation 
12

ε ε . ε12 11 22
1

2
121= −( ) ( k )

 
Figure 3.  Partition coefficients for the system ovalbumin(1)-lysozyme(2) 

at pH 7 and ionic strength 6 molal ammonium sulfate at 25 °C. 
 The points are from experimental solubility data of Coen (1995) and Coen 

et al (1995). The interaction parameter k  is defined through the equation 12

ε ε ε12 11 22
1

2
121= −( ) ( k ) . 

 
Figure 4.  Phase diagrams for the system ovalbumin(1)-lysozyme(2) at 

pH 4 and ionic strength 7 molal ammonium sulfate at 25 °C. 
 (a) Binary x'-x'' diagram showing solvent-free mole fraction in the light 

(double prime) and dense (prime) aqueous phases. (b) Partition 
coefficients. The points are from experimental solubility data of Coen 
(1995) and Coen et al (1995). The interaction parameter k  is defined 

through the equation 
12

ε ε . ε12 11 22
1

2
121= −( ) ( k )

 
  
Figure 5.  Phase diagrams for the system ovalbumin(1)-lysozyme(2) at 

pH 4 and ionic strength 8 molal ammonium sulfate at 25 °C. 
 (a) Binary x'-x'' diagram showing solvent-free mole fraction in the light 

(double prime) and dense (prime) aqueous phases. (b) Partition 
coefficients. The points are from experimental solubility data of Coen 
(1995) and Coen et al (1995). The interaction parameter k  is defined 

through the equation 
12

ε ε . ε12 11 22
1

2
121= −( ) ( k )
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Table 1. Net charge zi  for ovalbumin and lysozyme in 1 M potassium chloride for 
different pH. Data are from Cohn and Edsall (1943) for ovalbumin and from 
Kuehner et al (1994) for lysozyme.  
 
charge vs. pH 4 5 6 7 8 9 
ovalbumin 20 -2 -8 -12 -14 -16 
lysozyme 14 11 9 8 7.5 7 
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Table 2. Specific energy parameter (square-well depth) ε  for ovalbumin in an 
aqueous one-protein system containing ammonium sulfate at 25 °C. Ionic strength I 
is in molal units. Values for pH 7 and ionic strength 6 and 7 molal were extrapolated 
from experimental data at higher ionic strengths since the ovalbumin one-protein 
system does not phase-separate at these conditions. 

/ kT

 
I \ pH 3 4 5 6 7 

6     2.62 
7 4.82 5.41 4.77  3.46 
8 5.56 6.07 5.63 4.79 4.3 
9 6.33 6.94 6.22 5.29 5.05 
10 6.9 7.13 7.01 6.25 6.07 
11   7.49 6.8 6.74 
12   8.22 6.95 7.01 
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Table 3. Specific energy parameter (square-well depth) ε  for lysozyme in an 
aqueous one-protein system containing ammonium sulfate at 25 °C. Ionic strength I 
is in molal units. 

/ kT

 
I \ pH 3 4 5 6 7 8 

5  5.56 3.94 3.95 3.96 3.94 
6  5.7 4.52 4.27 4.33 4.34 
7 6.99 6.09 5.22 4.85 5.1 5.03 
8 7.25 6.33 5.85 5.42 5.57 5.57 
9 7.32 7.01 6.47 6.24 6.39 6.34 
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Table 4. Interaction parameters k  for the aqueous two-protein system containing 
ammonium sulfate at 25 °C. Ionic strength I is in molal units. 

ij

 
I \ pH 4 5 6 7 

6    -0.051 
7 0.06   0.01 
8 0.1   0.04 
9 -0.075 -0.055 0.003 -0.02 
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